CODE:-AG-89936

General Instructions :

1. All question are compulsory.
2. The question paper consists of 29 questions divided into three sections A,B and C. Section - A comprises of 10 question of 1 mark each. Section - B comprises of 12 questions of 4 marks each and Section - C comprises of 7 questions of 6 marks each .
3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four.
4. There is no overall choice. However, internal choice has been provided in 2 question of four marks and 2 questions of six marks each. You have to attempt only one lf the alternatives in all such questions.
5. Use of calculator is not permitted.
6. Please check that this question paper contains 3 printed pages.
7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश :

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड - अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड - ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड - स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
5. कैलकुलेटर का प्रयोग वर्जित हैं ।
6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 3 हैं।
7. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
Pre-Board Examination 2010-11

Time: 3 Hours
Maximum Marks : 100
Total No. Of Pages :3

अधिकतम समय : 3
अधिकतम अंक : 100
कुल पृष्ठों की संख्या : 3

CLASS - XII	CBSE	MATHEMATICS
	Section A	

Q. 1	Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the YZ-plane. Ans $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$
Q.2	If A is a non-singular matrix such that $A^{-1}=\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$, , then find $\left(A^{T}\right)^{-1}$, where A^{T} is transpose of A.
Ans $\left(A^{T}\right)^{-1}=\left[\begin{array}{cc}5 & -2 \\ 3 & -1\end{array}\right]$	
Q.3	Write the number of all one-one functions from the set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ to itself. Ans $=6$
Q.4	In a triangle ABC, the sides AB and BC are represented by vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+3 \hat{j}+5 \hat{k}$ respectively. Find the vector representing CA. Ans : $-(3 \mathrm{i}+2 \mathrm{j}+7 \mathrm{k})$

TARGET MATHEMATICS by:- AGYAT GUPTA

Q. 5	Evaluate $\int_{0}^{1} \frac{x}{x^{2}+1} d x$. Ans $I=\frac{1}{2}[\log 2-0]=\frac{1}{2} \log 2$.
Q. 6	Let $A=\left[a_{i j}\right]_{m \times 3} ; B=\left[b_{i j}\right]_{p \times 4}$ and $C=\left[c_{i j}\right]_{2 \times 4}$ are such that $A_{m \times 3} \cdot B_{p \times 4}=C_{2 \times 4}$; find the value of m and p . Ans m $=2, \mathrm{p}=3$
Q. 7	Prove that : $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$.
Q. 8	The vectors $\vec{a}=3 \hat{i}+x \hat{j}-\hat{k} \& \vec{b}=2 \hat{i}+\hat{j}+y \hat{k}$ are mutually perpendicular. Given that $\|\vec{a}\|=\|\vec{b}\|$, find the values of x and y . Ans. $x=\frac{-31}{12}, y=\frac{41}{12}$
Q. 9	
Q. 10	Evaluate : $\int \sec ^{2}(7-x) d x .\{$ Ans. $-\tan (7-x)+C$
	Section B
Q. 11	Find all the point of discontinuity of the function f defined by $f(x)=\left\{\begin{array}{cc}x+2 & x \leq 1 \\ x-2 & 1\langle x<2 \\ 0 & x \geq 2\end{array}\right\}$. Ans Being a polynomial function $\mathrm{f}(\mathrm{x})$ is continous at all point for $\mathrm{x}<1,1<\mathrm{x}<2$ and except $\mathrm{x}=1,2$. To check continuity at $\mathrm{x}=1 \& 2 . \mathrm{f}(\mathrm{x})$ is continous at $\mathrm{x}=2$ and discontinous at $\mathrm{x}=1$.
Q. 12	Evaluate : $\int \frac{x^{3}+x}{x^{4}-9} d x$. Ans $: \frac{1}{4} \log \left(x^{4}-9\right)+\frac{1}{12} \log \left[\frac{x^{2}-3}{x^{2}+3}\right]$ OR Evaluate: $\int \frac{e^{\tan ^{-1} x}}{\left(1+x^{2}\right)^{2}} \mathrm{dx}$. Ans. $\frac{1}{10} e^{\tan -1 x}\left\{5+\frac{1-x^{2}}{1+x^{2}}+\frac{4 x}{1+x^{2}}\right\}$
Q. 13	Solve the differential equation : $x \frac{d^{2} y}{d x^{2}}=1$ given that $y=1, \frac{d y}{d x}=0$, when $x=1$. Ans. $y=x \log x-x+2$
Q. 14	If $y=(\cos x)^{\log x}+(\log x)^{x}$; find $\frac{d y}{d x}$. Ans $\frac{d y}{d x}=(\cos x)^{\log x}\left[\frac{-x \tan x \log x+\log (\cos)}{x}\right]+(\log x)^{x}\left[\frac{1+\log x \cdot \log (\log)}{\log x}\right]$
Q. 15	If a unit vector \vec{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with x -axis and y -axis respectively and an ante angle θ with z-axis, then find θ and the (scalar and vector) components of \vec{a} along the axes. Ans. $\frac{1}{\sqrt{2}} i+\frac{1}{2} j+\frac{1}{2} k \& \theta=\frac{\pi}{3}$
Q. 16	Solve the equation : $\sec ^{-1} \frac{x}{a}-\sec ^{-1} \frac{x}{b}=\sec ^{-1} b-\sec ^{-1} a \cdot$ Ans $x= \pm a b$ OR Prove that : $\sin \left(2 \tan ^{-1} \frac{1}{3}\right)+\cos \left(\tan ^{-1} 2 \sqrt{2}\right)=\frac{14}{15}$.
Q. 17	Using the properties of determinants, prove the following: $\left\|\begin{array}{ccc} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{array}\right\|=2\left\|\begin{array}{ccc} a & b & c \\ p & q & r \\ x & y & z \end{array}\right\| .$
Q. 18	Neelam is taking up subjecte mathematics, physics and chemistry. She estimates that his probabilities of receiving grade A in these course are $0.2,0.3$ and 0.9 respectively. If the grades can

TMC/D/79/89

2

```
                                    P.T.O.
```


TARGET MATHEMATICS by:- AGYAT GUPTA

	be regarded as independent events find the probabilities that the receives: (i) All A's (ii) Exactly two A's Ans (i)0.054(ii) 0.348
Q. 19	Show that each of the relation R in the set $\mathrm{A}=\{x \in 2: 0 \leq x \leq 12\}$, given by (i) $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):\|a-b\|$. is a multiple of 4$\}$.Ans $\{1,5,9\}$ (ii) $R=\{(a, b): a=b\}$ is an equivalence relation.Find the set of all elements to 1 in each cases. Ans \{1\}
Q. 20	Find the intervals in which the function f given by $f(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x}$ on $[0,2 \pi]$ is (i) increasing (ii) decreasing. Ans : $\mathrm{f}(\mathrm{x})$ is increas ing on $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right) \& \downarrow$ on $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ OR The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. How fast is the area decreasing when the two equal sides are equal to the base? Ans $-\sqrt{3} \mathrm{bcm}{ }^{2} / \mathrm{sec}$
Q. 21	Show that $y=\cos ^{-1} x$ is a solution of the differential equation $x\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left(2 x^{2}-1\right) \frac{d y}{d x}=0$. OR Find the general solution of the differential equation : $x \log x \cdot \frac{d y}{d x}+y=\frac{2}{x} \cdot \log x\{$ Ans $(\log x) \cdot y=2\left[-\frac{1}{x} \log x-\frac{1}{x}\right]+c$
Q. 22	By examining the chest X-ray, the probability that T.B. is detected when a person is actually suffering is 0.99 .The probability that the doctor diagnoses is incorrectly that a person has T.B. on the basis of x-ray is 0.001.In a certain city, 1in 1000 persons suffers from TB. A person is selected at random and is diagnosed to have T.B. What is the chance that he actually has T.B.? Ans: $\text { Required probability }=\frac{\frac{1}{1000} \times .99}{\frac{1}{1000} \times .99+\frac{999}{1000} \times .001}=\frac{110}{221}$
	Section C
Q. 23	Using integration, find the area of the triangle bounded by the lines $\mathrm{y}=2 \mathrm{x}+1, \mathrm{y}=3 \mathrm{x}+1$ and $\mathrm{x}=4$. Ans Required Area $=\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x=8 u n i t^{2}$ OR Sketch the region common to the circle $x^{2}+y^{2}=25$ and the parabola $y^{2}=8 x$. Also, find the area of the region using integration. Ans $=\frac{2 \sqrt{2}}{3}(\sqrt{41}-4)^{\frac{3}{2}}+\frac{25 \pi}{2}-25 \sin ^{-1}\left(\frac{\sqrt{41}-4}{5}\right)$, sq.units.
Q. 24	Evaluate: $\int_{0}^{3 / 2} x \cos \pi x d x$. Ans. $\int_{0}^{1 / 2} x \cos \pi x d x-\int_{1 / 2}^{3 / 2} x \cos \pi x d x=\frac{5}{2 \pi}-\frac{1}{\pi^{2}}$
Q. 25	State the condition under which the following system of equations have a unique solutions. If $\mathrm{A}=\left[\begin{array}{ccc}9 & 7 & 3 \\ 5 & -1 & 4 \\ 6 & 8 & 2\end{array}\right]$, find A^{-1} and hence solve the following system of equations: $9 x+7 y+3 z=6 ; 5 x-y$

TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4

	$+4 \mathrm{z}=1 ; 6 \mathrm{x}+8 \mathrm{y}+2 \mathrm{z}=4 . \quad$ Ans. $\quad A^{-1}=\frac{-1}{70}\left[\begin{array}{ccc}-34 & 10 & 31 \\ 14 & 0 & -21 \\ -46 & -30 & -44\end{array}\right], x=1, y=0, z=-1$
Q. 26	Prove that the lines $\frac{X+4}{3}=\frac{Y+6}{5}=\frac{Z-1}{-2}$ and $3 x-2 y+z+5=0 ; 2 x+3 y+4 z-4=0$ are coplanar . Also write the equation of plane in which they lie. Ans. $45 x-17 y+25 z+53=0$
Q. 27	A rectangular sheet of paper for a poster is $15000 \mathrm{sq} . \mathrm{cm}$. in area. The margins at the top and bottom are to be 6 cm . wide and at the sides 4 cm . wide. Find the dimensions of the sheet to maximize the printed area. Ans length $=138 \mathrm{~cm}$, breadth $=92 \mathrm{~cm}$ OR A square tank of capacity 250 cubic metres has to be dug out. The cost of the land is $₹ 50$ per sq meter. The cost of digging increases with the depth and for the whole tank it is $₹ 400 \mathrm{~h}^{2}$, where h meters is the depth of the tank. What should be the dimension of the tank so that the cost be minimum? Ans volume of tank $=x^{2} h=250$; cost of land $=50 x^{2}$; cost of digging $=400 h^{2}$; Total cost $=50 x^{2}+400 h^{2}=\frac{12500}{h}+400 h^{2}$ There fore length \& breadth $=10 \mathrm{~m}$, height $=2.5 \mathrm{~m}$
Q. 28	Find the equation of the plane parallel to line $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$ and containing the lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ in vector and Cartesian form, also find distance of plane from origin. Ans $x+y+z=0, r(i+j+k)=0 \& \mathrm{D}=0$
Q. 29	A furniture firm manufactures chairs and tables, each requiring the use of three machines A, B and C. Production of one chair requires 2 hours on machine A, 1 hour on machine B and 1 hour on machine C. Each table requires 1 hour each on machine A and B and 3 hours on machine C. The profit obtained by selling one chair in ₹ 30 while by selling one table the profit is $₹ 60$. The total time available per week on machine A is 70 hours, on machine B is 40 hours and on machine C is 90 hours. How many chairs and tables should be made per week so as to maximize profit? Formulate the problem as L.P.P. and solve it graphically.Ans : $\mathrm{z}=30 \mathrm{x}+60$ y $x, y \geq 0,2 x+y \leq 7 Q x+y \leq 4 \varrho x+3 y \leq 9($ corner points : $(0,0) ;(35,0) ;(30,10)(15,25) ;(0,30)$ number of chair $=x=15 \&$ table $=$ $\mathrm{y}=25$ maximum profit $=1950$
	-___X___

